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Abstract

Objectives This review summarizes recent research on the neuropharmacological and
pharmacokinetic properties of berberine, an isoquinoline alkaloid extracted from Coptidis
rhizoma.
Key findings Berberine has multiple neuropharmacological properties, such as
neuroprection, anti-neuronal apoptosis, improvement of cerebral microcirculation and anti-
Alzheimer’s disease, and so on. The pharmacokinetic characteristics of berberine are that it is
not easily absorbed and it is not stable in the gastrointestinal tract of animals or humans.
Summary Further studies need to be carried out to develop berberine as a drug for
nervous system diseases, such as brain ischaemia and Alzheimer’s disease, that has
favorable pharmacokinetic properties.
Keywords Alzheimer’s disease; berberine; neuropharmacology; pharmacokinetics

Introduction

Berberine (BBR), a yellow plant isoquinoline alkaloid (see Figure 1) with yellow
fluorescence under ultraviolet light, is found in the root, rhizome and stem bark of many
plants, such as Berberis, Hydrastis canadensis and Coptidis rhizoma, which have all been
used as herbal drugs in traditional Chinese medicine. BBR has had several different
bioactivities reported, including anti-inflammatory,[1] cardioprotective,[2] antitumor,[3]

antimalarial,[4] antioxidative[5] and cerebroprotective effects.[6] These properties were
summarized in two recent and excellent reviews.[7,8] In clinical use, BBR chloride or BBR
sulfate are the generally applied formulations.

In view of increasing numbers of demonstrations of BBR’s pharmacological effects in the
nervous system and its potential application in the therapy of nervous system diseases such as
brain ischaemia and Alzheimer’s disease, this article provides an overview of recent research
into BBR’s neuropharmacology and its pharmacokinetics in animals and humans.

The following databases were used in searching key literature: Medline (1982 to
December 2008), Scifinder (1982 to December 2008) and Full Text Database of Journals
Published in Chinese (1994 to December 2008).

Neuropharmacology of berberine

Berberine and brain ischaemia
Neuroprotection
Studies of ischaemia-induced cell damage have revealed a complex mechanism involving
glutamate excitoxicity, intracellular calcium increase and free radical production. The
production of free radicals correlates with intracellular calcium elevation. Calcium is
considered a mediator of ischaemic brain damage from global or focal ischaemia.
Glutamate receptor blockage can result in decreased free radical production and markedly
diminished intracellular calcium accumulation.

BBR exerts a protective effect against neuronal injury due to the neurotoxicity of
excitatory amino acids, such as glutamate, during ischaemia. Wu et al. showed that the cell
death rate of neurons treated with BBR (5 mmol/l) is significantly lower than that of non-
treated neurons.[9] No pathological and morphological changes were found in BBR-treated
neurons, whose shapes were similar to those of normal ones.

BBR protects the hippocampal CA1 region from ischaemic injury by inhibiting
N-methyl-D-aspartate receptor 1 immunoactivity in ischaemic gerbil brains,[10] and Fan
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et al. demonstrated that it can also potentially protect the
brain tissue of acute hypoxic mice.[11] It can inhibit the
increase of intracellular calcium concentration ([Ca2+]i) by
reducing glutamate, serotonin and noradrenaline (norepi-
nephrine),[12] and it can alleviate neuronal injury from
oxygen and glucose deprivation, improve superoxide dis-
mutase (SOD) activity, reduce melondialdehyde (MDA)
generation[13] and increase the content of glutathione. BBR
(5–30 mmol/l) was observed by Wu et al. to significantly
reduce cell death rate, lactate dehydrogenase leakage rates
and MDA generation, and to elevate activity of SOD in
cortical neurons exposed to H2O2.

[14] These activities of
BBR may be the reason why ONOO(–)-induced damage in an
in-vitro system was potently blocked by BBR (10–20 mg/kg
per day for 10 days).[15]

Anti-neuronal apoptosis
Neuronal apoptosis plays an important role in the pathogen-
esis of cerebral ischaemia. While damaged neurons often die
from necrosis, apoptosis contributes significantly to cell
death subsequent to cerebral ischaemia and is predominant
when the excitoxic insult is relatively mild.[16]

It has been reported that BBR can inhibit delayed
neuronal death (DND), a kind of cell apoptosis in the
hippocampal CA1 region after an ischaemic insult, which is
characterized by the dramatic shrinkage and loss of the
fibre bundle. Ultrastructural changes of neurons treated with
BBR show clearly that DND is significantly alleviated or
delayed by BBR, and that the morphology of neurons in
the CA1 region is normal compared with that in animals
treated with placebo.[17] In addition, after short/long-term
ischaemic reperfusion in the hippocampus, the morphology
of neurons in the CA1, CA2 and CA3 regions was also
protected by BBR (30 mg/kg, 30 min before ischaemia and
8 mg/kg 24 h and 48 h after reperfusion), possibly due to a
protective effect on the hippocampal pyramidal cells caused
by improving the resistance of the mitochondria, rough
endoplasmic reticulum and the Golgi body to ischaemia in
the early stages of ischaemic reperfusion.[18]

Pathologic conditions such as hypoxia or ischaemia have
been reported to induce cellular apoptosis as well as to
regulate hypoxia-inducible factor-1a (HIF-1a). In ischaemic
conditions, HIF-1a induces pro-apoptotic BNIP3 (Bcl-2/
adenovirus E1B interacting protein 3), Nix gene expression
through binding with p53, and then promotes the expression
of inducible nitric oxide synthase (iNOS) and the generation
of nitric oxide (NO), leading to apoptosis. BBR inhibits
neuronal apoptosis by reducing the expression of HIF-la,

which plays an important role in maintaining oxygen
equilibrium. The mechanism by which HIF-1a expression
is reduced is based on the enhancement of lysine acetylation
and proteolysis.[19] Furthermore, BBR (1 mg/kg) can
enhance the expression of the Bcl-2 gene and lower the
Bax gene expression in the hippocampal CA3 region after
cerebral ischaemia in mice. Bcl-2 is an anti-apoptotic protein
while Bax is a proapoptotic one, therefore BBR reduces the
occurrence of neuronal apoptosis.[20]

In addition, excessive K+ efflux and intracellular K+

depletion have been hypothesized to be key steps in the
apoptotic cascade of many cells, including central neurons.
BBR (1–300 mmol/l) can block the potassium channels of
hippocampal CA1 neurons. This is beneficial for the cation
balance of neurons after ischaemic injury, and leads to the
suppression of apoptosis.[21]

Improving cerebral microcirculation in the
ischaemic brain
Microcirculation dysfunction is an important pathophysiolo-
gical change in ischaemic cerebrovascular disease, therefore
improvement of cerebral pial microcirculation is crucial for
the maintenance of cerebral blood flow and the treatment of
symptoms of cerebral ischaemia.[22]

BBR has a favourable effect on vasodilatation, markedly
dilating the peripheral arteries of the cerebral pial micro-
circulation, accelerating microcirculation blood flow and
maintaining cerebral blood flow and the basic metabolism of
nerve cells.[23] It has been reported that BBR (20 mg/kg per
day, i.p., 5 days) can inhibit the elevated platelet adhesion
and aggregation rate induced by adenosine diphosphate,
collagen or arachidonic acid after cerebral ischaemia.[24,25] In
addition, BBR can decrease lesions of cerebral vascular
endothelial cells, which are relevant to the occurrence and
the development of cerebral vascular diseases, particularly in
the early pathological changes of cerebral ischaemia.[26] A
possible mechanism may be that BBR can modulate the
expression of intercellular adhesion molecule 1 and partially
modulate expression of vascular cell adhesion molecule
1 and other adhesion molecules, by lowering the nuclear
factor (NF)-kB light chain gene enhancer of activated B cell
gene expression.[26]

Berberine and Alzheimer’s disease
Alzheimer’s disease (AD), the most common form of
dementia, is recognized as a progressive neurodegenerative
disease of the brain, which causes cognitive dysfunction and
memory loss related to hippocampal damage. There are
several hypotheses to explain the underlying mechanisms of
AD, including the cholinergic hypothesis, the amyloid
protein (Ab)-toxicity hypothesis and the oxidative stress
hypothesis.[27,28] These hypotheses are very useful as a guide
in the search for novel strategies against AD or to explain the
effects of drugs for AD.

The results of both postmortem and antemortem studies in
the aged and in AD patients, as well as animal experiments,
suggest that a host of cholinergic abnormalities, including
alterations in choline transport, acetylcholine release,
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Figure 1 Chemical structure of berberine
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nicotinic and muscarinic receptor expression, neurotrophin
support and perhaps axonal transport, may all contribute
to cognitive abnormalities in AD. Multiple lines of evi-
dence demonstrate that oxidative stress occurs prior to
cytopathology and therefore may play a key pathogenic role
in AD.

The Ab hypothesis is a particularly well-known descrip-
tion of the pathogenesis of AD. Ab accumulation and
extracellular Ab deposition are toxic to neurons. Inhibition of
Ab generation and aggregation, enhancement of extracellular
Ab removal and Ab vaccination are therefore currently under
investigation as possible treatments.

Recently, several studies have found that BBR is an
excellent reversible acetylcholinesterase inhibitor.[29–32] Shi
et al. found that it can improve learning and memory
disorders induced by scopolamine in mice.[33] However, Guo
et al. showed that it did not improve learning–memory
dysfunction induced by cycloheximide, indicating that the
improvement in learning and memory induced by BBR
(4.0 mg) may be related to inhibition of central cholinesterase
but that there is no relation to the synthesis and metabolism
of proteins.[34]

The neuroprotective effects of BBR have also been
observed by assaying learning and memory in animals with
post-cerebral ischaemia.[35] Differences in the deficiency of
learning and memory in different ischaemic-reperfused rats
were used to determine the extent of damage to the
hippocampus, in which neurons of regions CA2, CA3 and
CA4 play a crucial role in animal spatial learning and
memory. Obviously, this protective effect of BBR is based
on maintaining the morphological structure of the hippo-
campus in reperfused animals.[17]

Many cytokines and proteins, such as Bcl-2 and tumour
necrosis factor a (TNF-a), are involved in the development
of AD.[36] It is very interesting that BBR was found to
improve cognitive ability in aged people with a high risk of
developing dementia, alongside increasing the whole blood
Bcl-2 level and decreasing the level of serum TNF-a. These
features may be indicators of neuroprotection in the blood of
patients with chronic cerebropathy.[37] Because of the small
size of the sample, further research should be carried out
to confirm the function of BBR. In addition, BBR has
significantly ameliorated spatial memory impairment in a rat
model of AD, although at the same time it increased the
expression of two inflammatory factors, interleukin-1b
(IL-1b) and iNOS.[38]

Interestingly, recent findings have indicated that BBR
decreases Ab levels in order to protect neurons. Its 50%
inhibition concentration (IC50) for extracellular Ab produc-
tion is around 5 mM. This effect of BBR is due to modulation
of amyloid precursor protein processing at a non-neurotoxic
concentration, suggesting that BBR may be a promising
candidate for the treatment of AD.[39] BBR (10 mg/ml) was
also found to have nerve growth factor (NGF)-potentiating
activity, which could increase NGF-induced neurite out-
growth in a dose-dependent manner without cytotoxicity in
rat phaeochromocytoma cells (PC12 cells). This NGF-
potentiating activity of BBR was not associated with its
inhibition of acetylcholinestrase (AChE) and/or the accumu-
lation of acetylcholine.[40]

Other pharmacological activities
Improving diabetic neuropathy
Diabetic neuropathy (DN) has become one of the most
common chronic complications of diabetes. Control of blood
glucose is one of the most effective methods of preventing
the formation and development of DN.

BBR (100 mg/kg) can significantly decrease the concen-
tration of fasting blood glucose in diabetic rats, and a large
dosage of BBR can ameliorate nerve pain in DN rats to some
extent.[41] It also significantly increases the nerve conduction
velocity in diabetes complicated with DN in rats.[42] In
addition, BBR is reported to inhibit glycosylation, in
particular glycosylation in brain tissue, reducing the forma-
tion of advanced glycation end-products in brain tissue and
inhibiting calcium overload to reduce the damage to nerve
cells that these induce. BBR particularly protects the
mitochondria of the hippocampus, and this might be the
basis of its prevention of DN.[43] It is worth noting that AChE
and butyrylcholinesterase activity was significantly higher
in the serum of type 2 diabetes rats complicated by AD
compared with normal rats.[44] BBR may therefore have
important clinical applications in the prevention and treat-
ment of type 2 diabetes accompanied by AD.

Antidepressant and anxiolytic effects
BBR (10–20 mg/kg, p.o. or 5–20 mg/kg i.p.) exerts an
antidepressant-like effect in two models of depression.
The mechanism may be the modulation of noradrenaline,
serotonin and dopamine levels in the hippocampus and
frontal cortex.[45,46] However, the antidepressant-like effect
of BBR is not dose-dependent. Moreover, BBR (IC50,
126 mM) is reported to have an inhibitory effect on
monoamine oxidase enzymes, particularly monoamine oxi-
dase-A.[47]

BBR (100 mg/kg) exerts a significant anxiolytic effect,
which may be related to increased turnover rates of
monoamines in the brain stem and to decreased serotonergic
system activity, by activating 5-HT1A receptors and
inhibiting postsynaptic 5-HT1A and 5-HT2 receptors.[48]

Attenuation of repeated nicotine-induced
behavioural sensitization
Repeated injections of nicotine can produce an increase in
locomotor activity and the expression of the immediate-early
gene, c-fos, in the central dopaminergic areas. Pretreatment
with BBR (100 mg/kg, i.p.) significantly inhibited the
nicotine-induced locomotor activity and the expression of
c-Fos in the striatum and nucleus accumbens in rats. These
results suggest that BBR inhibits nicotine-induced beha-
vioural sensitization, possibly by reducing postsynaptic
neuronal activation in the central dopaminergic system.[49]

The pharmacokinetics of berberine

BBR has been used clinically for several decades.[7,8] Apart
from its pharmacological properties, many pharmacokinetic
studies have been conducted in animals and in human beings
(see Table 1).[50]
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The pharmacokinetic characteristics of
berberine in animals
BBR is difficult to absorb because of its poor absorption rate
by the gut wall. After oral adminstration of 50 mg/kg BBR a
maximum concentration of only 92.7 mg/l is attained.[51] The
absorption ratio of BBR can reach about 33.6% within 1 h
using an in-situ intestinal loop, but the concentration peak
value of BBR was only 10 ng/ml at 2 h after oral
administration.[52] Subsequently 40 mg/kg BBR was elimi-
nated within 12 h, and then a very low plasma concentration
was maintained for 48 h.

BBR distributes itself extensively in animal bodies.
3H-berberine administered intravenously to rabbits distrib-
uted rapidly to the organs, with the highest radioactivity
found in the lungs, followed by the liver, spleen and heart.[53]

In addition, BBR can penetrate the blood–brain barrier, with
a rapid increase in the hippocampus after intravenous
administration, followed by slow elimination. This suggests
that BBR can act directly on neurons and accumulate in the
hippocampus.[54]

The limited number of metabolic studies of BBR in animal
bodies suggests that BBR is metabolized rapidly in the body,
and that the liver is the main metabolic site. After BBR is
absorbed, clearance of BBR from the blood is very fast and, in
rats at least, it is quickly transferred to the liver and bile

through active transportation and than rapidly biotrans-
formed.[50,55] Once absorbed by the body, BBR is frequently
metabolized completely. It was shown that only 4.93% and
0.5% of an i.v. dose of 2 mg/kg BBR was eliminated from the
urine and bile.[56] In a study on rats, after a single oral dose of
12 g/kg xie xin decoction (containing 32.7 mg/g BBR), the
amount of BBR excreted from urine over the following 72 h
was only 0.036% of the original dose.[57]

BBR is metabolized in the rat liver via phase I
demethylation and phase II glucuronidation, and it is then
apparently excreted through the duodenum in bile. Metabo-
lites of BBR also circulate in the body, and in rats the liver
and intestinal bacteria may participate in the metabolism and
disposition, and may therefore affect the bioavailability.[52]

The main metabolites are phase I demethylberberine (see
Figure 2) and phase II conjugation products.

In animals, BBR is mainly excreted by the hepatobiliary
system and kidney in the form of metabolites. After
administration of BBR (10 mg/kg) through the femoral
vein, BBR and its main metabolites were excreted by the
hepatobiliary system and detected by high-performance
liquid chromatography coupled to microdialysis.[55] After
i.v. administration of 3H-berberine in rats over 6 days, 73%
of the BBR given was detected in the urine.[51] Similar
results have been reported in rabbits.[56]

Table 1 The pharmacokinetic parameters of berberine in animals and humans

Species Dosage Method of

administration

PK parameters Findings References

Rabbit 50 mg/kg Oral t1/2a: 0.14 h, t1/2b: 3.11 h, Cmax: 92.7 mg/l,
tmax: 0.63 h, AUC: 491.70 mg/h/l

Single-compartment model; oryzanol affects

the absorption of BBR in rabbits

[51]

Rabbit 46.25 MBq/kg i.g. t1/2a: 1.41 h, t1/2b: 35.3 h,

Vd: 20 l/kg, Ka: 2.45/h

Open two-compartment model; rapid

absorption, distributes extensively and

eliminated slowly

[53]

Rabbit 25.9 MBq/kg i.v. t1/2a: 1.03 h, t1/2b: 35.8 h,

Vd: 22.1 l/kg

Open two-compartment model; fast absorp-

tion and extensive distribution; highest

concentration in lung; inhibition to heart

less likely

[53]

Rat 40 mg/kg p.o. Cmax: 10 g/ml, AUC: 37.42 mgh/l,
MTT: 10.52 h

Rapid absorption and fast metabolism; liver

and intestinal bacteria participate in the

metabolism and disposition of BBR in vivo

[52]

Rat 10.2 mg/kg

C. rhizoma extract

containing 3 mg/kg

BBR

i.v. Hippocampus: t1/2a: 0.22 h,

Cmax: 272 ng/g, tmax: 3.67 h,

t1/2b: 12.0 h, AUC: 6940 ng/h/l

Plasma: AUC: 473 ng�h/l, t1/2a: 0.23 h,

t1/2b: 1,13 h, Vd: 2400 ml/kg

Kinetic characteristics of BBR are different

in the plasma and hippocampus: elimi-

nated rapidly in the plasma, increases

rapidly in the hippocampus

Direct action on neuron and accumulation

in the hippocampus

[54]

Dog 100 mg/kg i.v. t1/2a: 0.15 h, t1/2b: 12.59 h, CL: 60.70 l h,

AUC: 1979.31 mg/h/l, Vd: 699.53 l

Two-compartment model, distributes

extensively

[50]

Dog 280 mg/kg oral t1/2a: 0.63 h, tmax: 3. 71 h, Vd: 125.4 l

Cmax: 15.46 mg/l, AUC: 777.29 mg/h/l,
CL: 2.64 l/h

Distributes extensively, eliminated slowly [50]

Human 300 mg/kg oral t1/2a: 0.869 h, tmax: 2.37 h,

Cmax: 394.7 mg/l, AUC: 2799 mg/h/l
Single-compartment model; rapid

absorption, distributes extensively

[58]

Human 300 mg/kg oral t1/2a: 0.87 h, tmax: 2.37 h,

Cmax: 394.8 mg/l, AUC: 3028.30 mg/h/l
Single-compartment model; oryzanol pro-

motes the absorption of BBR and has no

effect on absorption rate in humans

[51]

PK, pharmacokinetic; i.g., intragastric; i.v., intravenous; p.o., per os; t1/2, half-life; t1/2a, distribution half-life; t1/2b, elimination half-life; AUC, area

under curve; Cmax, maximum thalamus concentration; tmax, time to peak concentration; MTT, mean transit time; Vd, volume of distribution; CL, body

clearance.
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The pharmacokinetic characteristics of
berberine in humans
The available clinical data suggest that, with oral adminis-
tration, BBR can be absorbed by the gut wall and reach an
effective treatment concentration. Bao showed that after oral
administration of BBR chloride (300 mg, single dose), a
maximum concentration of 0.39 mg/l was reached, sufficient
for healing cardiac arrhythmia.[58] This study demonstrates
that BBR can be absorbed by humans.

The metabolism of BBR in the body is related to its
chemical components. BBR is known to be a quaternary
amine alkaloid, which binds easily to proteins, affecting
disposition and action intensity.[59] Tan and Xie demon-
strated that BBR hydrochlorate can bind strongly to human
serum albumin.[60] In addition, human multidrug resistance
protein 1 and multidrug resistance-associated protein 1
directly efflux BBR as their substrate and thus reduce
accumulation of BBR in cells.[61]

The metabolism of BBR in humans may mainly be based
on phase I demethylation and phase II glucuronidation and/or
sulfation. Pan et al. identified three sulfate-conjugated
metabolites of BBR chloride in human urine after oral
BBR administration. These are the phase II metabolites
jatrorrhizine-3-sulfate (M5), demethyleneBer-2-sulfate (M6)
and thalifendine-10-sulfate (M7). M6 was the major
metabolite (see Figure 3).[59] Recently, Qiu and colleagues
have fully isolated and identified urinary metabolites of
berberine in rats and human beings, including phase I
demethylberberine and phase II conjugation products.[62]

Summary

BBR, an isoquinoline alkaloid, can protect neurons against
damage induced by ischaemia and/or oxidative stress. It can be
used coupled with other drugs for treatment of brain ischaemia.
In addition to traditional functions such as lowering cholesterol

and glucose, BBR has diverse functions in the nervous system,
including improvement of memory and learning, an antide-
pressant-like effect and an anxiolytic effect. Pharmacokinetic
studies of BBR in the body indicate that BBR is not easily
absorbed and is not stable in the gastrointestinal tract. In order
to cure diseases of the central nervous system, adequate
bioavailability of the drug in the brain is very important.
However, current findings indicate that the toxicity of BBR is
mainly associated with intravenous administration. Thus, one
crucial step towards more widespread use of BBR is to increase
its bioavailability. A promising recent study by Lu achieved
bioavailability levels 6.47 times greater than that of berberine
tablet suspensions.[63] In addition, structural modification of
BBR could be another way to develop drugs for diseases of
the nervous system.[8] In summary, BBR is a promising
candidate for the treatment of neurological disorders, although
further research is still required.
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